Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279212

RESUMEN

Animal models of metabolic disorders are essential to studying pathogenic mechanisms and developing therapies for diabetes, but the induction protocols vary, and sexual dimorphism often exists. In a chronic diabetic model of diet-induced obesity (DIO) and low-dose streptozotocin (STZ)-induced hyperglycemia, blood glucose and lipid profiles were measured. The high-fat (HF) diet damaged insulin sensitivity and increased triglycerides, total cholesterol, LDL-cholesterol, HDL-cholesterol, and liver lipid deposition. STZ increased blood glucose and liver fibrosis with less effects on blood lipids or liver lipid deposition. The combination of DIO and STZ treatments led to significant liver lipid deposition and fibrosis. Female mice showed delayed body weight gain on HF diet and resisted STZ-induced hyperglycemia. However, once they developed DIO, which occurs around 26 weeks of HF diet, the female mice were prone to STZ-induced hyperglycemia. In hindlimb ischemia, male mice in the DIO-STZ group showed significantly worse neovascularization compared with DIO or STZ groups. The DIO-STZ females showed significantly worse recovery than the DIO-STZ males. Our observations suggest that DIO-STZ is a plausible model for studying metabolic and cardiovascular disorders in obesity and diabetes. Moreover, the findings in female animals stress the need to assess sexual dimorphism and investigate the underlying mechanisms that contribute to the worse vasculopathy manifestations in females in metabolic models.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Masculino , Femenino , Ratones , Animales , Glucemia/metabolismo , Insulina/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Obesidad/complicaciones , Modelos Animales de Enfermedad , Lípidos , Hiperglucemia/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Estrés Fisiológico
3.
Food Chem ; 426: 136577, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37301043

RESUMEN

Ginger (Zingiber officinale Roscoe) is a high-value food and herb worldwide. The quality of ginger is often related to its production regions. In this study, stable isotopes, multiple elements, and metabolites were investigated together to realize ginger origin traceability. Chemometrics showed that ginger samples could be preliminarily separated, and 4 isotopes (δ13C, δ2H, δ18O, and δ34S), 12 mineral elements (Rb, Mn, V, Na, Sm, K, Ga, Cd, Al, Ti, Mg, and Li), 1 bioelement (%C), and 143 metabolites were the most important variables for discrimination. Furthermore, three algorithms were introduced, and the fused dataset based on VIP features led to the highest accuracies for origin classification, with predictive rates of 98% for K-nearest neighbor and 100% for support vector machine and random forest. The results demonstrated that isotopic, elemental, and metabolic fingerprints were useful indicators for the geographical origins of Chinese ginger.


Asunto(s)
Zingiber officinale , Quimiometría , Isótopos , Minerales , Metabolómica
4.
Heliyon ; 9(5): e16149, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37234668

RESUMEN

The corneal K-F ring is the most common ophthalmic manifestation of WD patients. Early diagnosis and treatment have an important impact on the patient's condition. K-F ring is one of the gold standards for the diagnosis of WD disease. Therefore, this paper mainly focused on the detection and grading of the K-F ring. The aim of this study is three-fold. Firstly, to create a meaningful database, the K-F ring images are collected which contains 1850 images with 399 different WD patients, and then this paper uses the chi-square test and Friedman test to analyze the statistical significance. Subsequently, the all collected images were graded and labeled with an appropriate treatment approach, as a result, these images could be used to detect the corneal through the YOLO. After the detection of corneal, image segmentation was realized in batches. Finally, in this paper, different deep convolutional neural networks (VGG, ResNet, and DenseNet) were used to realize the grading of the K-F ring images in the KFID. Experimental results reveal that the entire pre-trained models obtain excellent performance. The global accuracies achieved by the six models i.e., VGG-16, VGG-19, ResNet18, ResNet34, ResNet50, and DenseNet are 89.88%, 91.89%, 94.18%, 95.31%, 93.59%, and 94.58% respectively. ResNet34 displayed the highest recall, specificity, and F1-score of 95.23%, 96.99%, and 95.23%. DenseNet showed the best precision of 95.66%. As such, the findings are encouraging, demonstrating the effectiveness of ResNet in the automatic grading of the K-F ring. Moreover, it provides effective help for the clinical diagnosis of HLD.

5.
Cells ; 12(9)2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37174741

RESUMEN

Reactive oxygen species (ROS) are radical oxygen intermediates that serve as important second messengers in signal transduction. However, when the accumulation of these molecules exceeds the buffering capacity of antioxidant enzymes, oxidative stress and endothelial cell (EC) dysfunction occur. EC dysfunction shifts the vascular system into a pro-coagulative, proinflammatory state, thereby increasing the risk of developing cardiovascular (CV) diseases and metabolic disorders. Studies have turned to the investigation of microRNA treatment for CV risk factors, as these post-transcription regulators are known to co-regulate ROS. In this review, we will discuss ROS pathways and generation, normal endothelial cell physiology and ROS-induced dysfunction, and the current knowledge of common metabolic disorders and their connection to oxidative stress. Therapeutic strategies based on microRNAs in response to oxidative stress and microRNA's regulatory roles in controlling ROS will also be explored. It is important to gain an in-depth comprehension of the mechanisms generating ROS and how manipulating these enzymatic byproducts can protect endothelial cell function from oxidative stress and prevent the development of vascular disorders.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Metabólicas , MicroARNs , Enfermedades Vasculares , Humanos , Especies Reactivas de Oxígeno/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales/metabolismo , Estrés Oxidativo/fisiología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Vasculares/metabolismo , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo
6.
ACS Omega ; 8(18): 16206-16217, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37179642

RESUMEN

The endothelium is the frontline target of multiple metabolic stressors and pharmacological agents. As a consequence, endothelial cells (ECs) display highly dynamic and diverse proteome profiles. We describe here the culture of human aortic ECs from healthy and type 2 diabetic donors, the treatment with a small molecular coformulation of trans-resveratrol and hesperetin (tRES+HESP), followed by proteomic analysis of whole-cell lysate. A number of 3666 proteins were presented in all of the samples and thus further analyzed. We found that 179 proteins had a significant difference between diabetic ECs vs. healthy ECs, while 81 proteins had a significant change upon the treatment of tRES+HESP in diabetic ECs. Among them, 16 proteins showed a difference between diabetic ECs and healthy ECs and the difference was reversed by the tRES+HESP treatment. Follow-up functional assays identified activin A receptor-like type 1 and transforming growth factor ß receptor 2 as the most pronounced targets suppressed by tRES+HESP in protecting angiogenesis in vitro. Our study has revealed the global differences in proteins and biological pathways in ECs from diabetic donors, which are potentially reversible by the tRES+HESP formula. Furthermore, we have identified the TGFß receptor as a responding mechanism in ECs treated with this formula, shedding light on future studies for deeper molecular characterization.

7.
PNAS Nexus ; 2(3): pgad050, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36959909

RESUMEN

Patients' suffering from large or deep wounds caused by traumatic and/or thermal injuries have significantly lower chances of recapitulating lost skin function through natural healing. We tested whether enhanced unfolded protein response (UPR) by expression of a UPR transcriptional activator, X-box-binding protein 1 (XBP1) can significantly promote wound repair through stimulating growth factor production and promoting angiogenesis. In mouse models of a second-degree thermal wound, a full-thickness traumatic wound, and a full-thickness diabetic wound, the topical gene transfer of the activated form of XBP1 (spliced XBP1, XBP1s) can significantly enhance re-epithelialization and increase angiogenesis, leading to rapid, nearly complete wound closure with intact regenerated epidermis and dermis. Overexpression of XBP1s stimulated the transcription of growth factors in fibroblasts critical to proliferation and remodeling during wound repair, including platelet-derived growth factor BB, basic fibroblast growth factor, and transforming growth factor beta 3. Meanwhile, the overexpression of XBP1s boosted the migration and tube formation of dermal microvascular endothelial cells in vitro. Our functional and mechanistic investigations of XBP1-mediated regulation of wound healing processes provide novel insights into the previously undermined physiological role of the UPR in skin injuries. The finding opens an avenue to developing potential XBP1-based therapeutic strategies in clinical wound care protocols.

8.
Proc Natl Acad Sci U S A ; 120(1): e2208541120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574661

RESUMEN

Impaired endothelial cell (EC)-mediated angiogenesis contributes to critical limb ischemia in diabetic patients. The sonic hedgehog (SHH) pathway participates in angiogenesis but is repressed in hyperglycemia by obscure mechanisms. We investigated the orphan G protein-coupled receptor GPR39 on SHH pathway activation in ECs and ischemia-induced angiogenesis in animals with chronic hyperglycemia. Human aortic ECs from healthy and type 2 diabetic (T2D) donors were cultured in vitro. GPR39 mRNA expression was significantly elevated in T2D. The EC proliferation, migration, and tube formation were attenuated by adenovirus-mediated GPR39 overexpression (Ad-GPR39) or GPR39 agonist TC-G-1008 in vitro. The production of proangiogenic factors was reduced by Ad-GPR39. Conversely, human ECs transfected with GPR39 siRNA or the mouse aortic ECs isolated from GPR39 global knockout (GPR39KO) mice displayed enhanced migration and proliferation compared with their respective controls. GPR39 suppressed the basal and ligand-dependent activation of the SHH effector GLI1, leading to attenuated EC migration. Coimmunoprecipitation revealed that the GPR39 direct binding of the suppressor of fused (SUFU), the SHH pathway endogenous inhibitor, may achieve this. Furthermore, in ECs with GPR39 knockdown, the robust GLI1 activation and EC migration were abolished by SUFU overexpression. In a chronic diabetic model of diet-induced obesity (DIO) and low-dose streptozotocin (STZ)-induced hyperglycemia, the GPR39KO mice demonstrated a faster pace of revascularization from hind limb ischemia and lower incidence of tissue necrosis than GPR39 wild-type (GPR39WT) counterparts. These findings have provided a conceptual framework for developing therapeutic tools that ablate or inhibit GPR39 for ischemic tissue repair under metabolic stress.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Ratones , Animales , Proteínas Hedgehog/metabolismo , Proteína con Dedos de Zinc GLI1 , Células Cultivadas , Neovascularización Fisiológica/fisiología , Células Endoteliales/metabolismo , Neovascularización Patológica , Isquemia , Receptores Acoplados a Proteínas G/genética , Hiperglucemia/genética , Diabetes Mellitus Tipo 2/genética
9.
Mol Ther Nucleic Acids ; 29: 259-271, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35892090

RESUMEN

Endothelial cell (EC) permeability is essential to vascular homeostasis in diabetes. MicroRNAs are critical gene regulators whose roles in the EC permeability have yet to be characterized. This study aims to examine the change in cell permeability induced by miR-200 and miR-466 in ECs. Human aortic ECs and dermal microvascular ECs from healthy subjects and type 2 diabetic patients were used. Our in vitro experiments unveiled higher expressions of miR-200 family members and miR-466 in diabetic ECs and in healthy ECs when exposed to high glucose. Overexpression of both miR-200 and miR-466 significantly increased EC permeability through transcriptional suppression of Claudin-5, the cell tight junction protein, by directly binding to its 3' untranslated region. In a mouse model of chronic hyperglycemia mimicking type 2 diabetes in humans (db/db mice), the delayed closure rate of a full-thickness excisional wound was partly rescued by topical application of the miR-200 inhibitor. The topical application of both miR-200 and miR-466 inhibitors exhibited improved efficacy in accelerating wound closure compared with the topical application of miR-200 inhibitor alone. Our study demonstrated the potentially effective approach of miR-200/miR-466 cocktail inhibition to restore vascular integrity and tissue repair in hyperglycemia.

10.
Food Chem ; 396: 133672, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35872496

RESUMEN

Food authenticity regarding different varieties and geographical origins is increasingly becoming a concern for consumers. In this study, headspace gas chromatography-mass spectrometry (HS-GC-MS) and fast gas chromatography electronic nose (fast GC e-nose) were used to successfully distinguish the varieties and geographical origins of dried gingers from seven major production areas in China. By chemometric analysis, a distinct separation between the two varieties of ginger was achieved based on HS-GC-MS. Furthermore, flavor information extracted by fast GC e-nose realized the discrimination of geographical origins, and some potential flavor components were selected as important factors for origin certification. Moreover, several pattern recognition algorithms were compared in varietal and regional identification, and random forest (RF) led to the highest accuracies for discrimination. Overall, a rapid and precise method combining multivariate chemometrics and algorithms was developed to determine varieties and geographical origins of ginger, and it could also be applied to other agricultural products.


Asunto(s)
Compuestos Orgánicos Volátiles , Zingiber officinale , Quimiometría , China , Nariz Electrónica , Cromatografía de Gases y Espectrometría de Masas/métodos , Zingiber officinale/química , Compuestos Orgánicos Volátiles/análisis
11.
Foods ; 11(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35681361

RESUMEN

Ginger (Zingiber officinale Roscoe) is one of the most popular spices in the world, with its unique odor. Due to its health benefits, ginger is also widely used as a dietary supplement and herbal medicine. In this study, the main flavor components of gingers processed by different drying methods including hot air drying, vacuum drying, sun-drying, and vacuum-freeze drying, were identified on the basis of headspace-gas chromatography coupled with mass spectrometry (HS-GC-MS) and fast gas chromatography electronic-nose (fast GC e-nose) techniques. The results showed that the ginger dried by hot air drying exhibited high contents of volatile compounds and retained the richest odor in comparison with those dried by other methods, which indicated that hot air drying is more suitable for the production of dried ginger. Sensory description by fast GC e-nose exhibited that ginger flavor was mainly concentrated in the spicy, sweet, minty, fruity, and herbaceous odor. The relative content of the zingiberene was significantly higher in the hot air drying sample than those by other methods, suggesting that dried ginger by hot air drying can retain more unique spicy and pungent odorants. Furthermore, the results of chemometrics analyses showed that the main variance components among the samples by different drying methods were α-naginatene, (+)-cyclosativene, and sulcatone in HS-GC-MS analysis, and α-terpinen-7-al, dimethyl sulfide, and citronellal in fast GC e-nose analysis. For comparison of fresh and dried gingers, terpinolene, terpinen-4-ol, 2,4-decadienal, (E, Z)-, and linalool were considered the main variance components. This study generated a better understanding of the flavor characteristics of gingers by different drying methods and could provide a guide for drying and processing of ginger.

12.
Ann Med ; 53(1): 1744-1757, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34672217

RESUMEN

BACKGROUND: Associations of dietary or supplementary intake of several unsaturated fatty acids and mortality have been widely studied but the results were still hitherto inconsistent or limited. It is still need to explore the effects of these fatty acids by using the objective biomarkers. OBJECTIVE: We aimed to investigate the relevancy of several serum n-3 and n-6 fatty acids with all-cause and disease-specific mortality to confirm their health effects and effects on the associations between dietary quality and all-cause mortality. METHODS: A total of 4132 people from NHANES 2003-2004 and 2011-2012 and the mortality information was confirmed from the NDI. CPH models adjusted for known risk factors were conducted to explore the associations between circulating n-3 and n-6 fatty acids and all-cause or CVD or cancer mortality under complex sampling. We further evaluated their effects on association between dietary quality and all-cause mortality. RESULTS: A total of 437 deaths occurred during the mean follow-up of 83.34 months, including 157 CVD death and 100 cancer death. Serum LA, ALA, EPA and DHA were associated with all-cause mortality (HR in quintile5: LA:0.584, 95%CI: 0.387-0.882, Ptrend = 0.011; ALA:0.626, 95%CI: 0.432-0.907, Ptrend = 0.008; EPA:0.535, 95%CI: 0.375-0.764, Ptrend = 0.001; DHA:0.669, 95%CI: 0.468-0.955, Ptrend = 0.031). Additionally, serum EPA and ALA were respectively related to CVD and cancer mortality (Q5 HR: EPA:0.450, 95%CI: 0.23-0.854, Ptrend = 0.009; ALA:0.387, 95%CI: 0.167-0.900, Ptrend = 0.022). Serum AA, GLA, DGLA and SDA were not associated with any risk of mortality. The effect on all-cause mortality of the lower AHEI scores can be improved by adherence to a higher serum LA, EPA and DHA (in the lowest AHEI strata, LA in tertile3 compared to tertile1 HR:0.596, 95%CI: 0.366-0.970; EPA:0.660, 95%CI: 0.454-0.959; DHA:0.666, 95%CI; 0.444-1.000). CONCLUSIONS: Our results support the recent dietary recommendations to increase the intake of plant-derived and marine-derived n-6 and n-3 to improve the ability of primary and secondary prevention.


Asunto(s)
Ácidos Grasos Omega-3/sangre , Ácidos Grasos Omega-6/sangre , Ácidos Grasos Insaturados/sangre , Mortalidad , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/mortalidad , Registros de Dieta , Humanos , Neoplasias/sangre , Neoplasias/mortalidad , Encuestas Nutricionales , Medición de Riesgo
14.
FASEB J ; 35(7): e21645, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34105824

RESUMEN

Peripheral arterial disease (PAD) is one of the major complications of diabetes due to an impairment in angiogenesis. Since there is currently no drug with satisfactory efficacy to enhance blood vessel formation, discovering therapies to improve angiogenesis is critical. An imidazolinone metabolite of the metformin-methylglyoxal scavenging reaction, (E)-1,1-dimethyl-2-(5-methyl-4-oxo-4,5-dihydro-1H-imidazol-2-yl) guanidine (IMZ), was recently characterized and identified in the urine of type-2 diabetic patients. Here, we report the pro-angiogenesis effect of IMZ (increased aortic sprouting, cell migration, network formation, and upregulated multiple pro-angiogenic factors) in human umbilical vein endothelial cells. Using genetic and pharmacological approaches, we showed that IMZ augmented angiogenesis by activating the endothelial nitric oxide synthase (eNOS)/hypoxia-inducible factor-1 alpha (HIF-1α) pathway. Furthermore, IMZ significantly promoted capillary density in the in vivo Matrigel plug angiogenesis model. Finally, the role of IMZ in post-ischemic angiogenesis was examined in a chronic hyperglycemia mouse model subjected to hind limb ischemia. We observed improved blood perfusion, increased capillary density, and reduced tissue necrosis in mice receiving IMZ compared to control mice. Our data demonstrate the pro-angiogenic effects of IMZ, its underlying mechanism, and provides a structural basis for the development of potential pro-angiogenic agents for the treatment of PAD.


Asunto(s)
Miembro Posterior/fisiopatología , Hiperglucemia/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isquemia/complicaciones , Metformina/metabolismo , Neovascularización Patológica/patología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Animales , Hipoglucemiantes/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Imidazolinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Piruvaldehído/metabolismo
15.
Aging (Albany NY) ; 13(7): 10141-10157, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33819181

RESUMEN

This study aimed to elucidate whether dietary amino acids (AAs) composition is associated with type 2 diabetes mellitus (T2DM) and to investigate how serum AAs profiles mediated this association. Two prospective cohorts of 1750 and 4024 adults were enrolled. Dietary AAs compositions index (AACI) was developed to reflect the overall quality of dietary AAs composition. Multivariate linear regression and logistic regression models were used to examine associations of AACI and T2DM. The AACI was associated with the incidence of T2DM with the relative risk and 95%CI from the bottom to the top tertiles being 1.00, 1.49 (0.88-2.51) and 2.27 (1.20-4.28), and 1.00, 1.58 (1.13-2.19) and 2.33 (1.56-3.47) in the two cohorts, respectively. The AACI was positively associated with serum valine, isoleucine, glutamic acid and phenylalanine, and it was negatively associated with serum glycine and histidine in both cohorts (P<0.01). Valine, glutamic acid and histidine consistently and partially mediated the association between the AACI and T2DM in the two cohorts, with total mediation effects of 33.4% and 54.6%, respectively. Dietary AAs composition was associated with the incidence of T2DM, meanwhile, the relationship was mediated by some degree of serum AAs. Future dietary strategies should focus on the improvement of the overall quality of dietary AAs compositions.


Asunto(s)
Aminoácidos/sangre , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Adulto , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Dieta , Femenino , Encuestas Epidemiológicas , Humanos , Incidencia , Masculino , Persona de Mediana Edad
16.
Front Nutr ; 8: 683918, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004796

RESUMEN

Background: Calcium is an essential element in our diet and the most abundant mineral in the body. A high proportion of Chinese residents are not meeting dietary calcium recommendations. The purpose of this study was to investigate the relationship between calcium intake and the health of residents in two longitudinal studies of Chinese residents. Methods: This study used nationally representative data from the Harbin Cohort Study on Diet, Nutrition, and Chronic Non-communicable Disease Study (HDNNCDS) and China Health Nutrition Survey (CHNS), including 6,499 and 8,140 Chinese adults, respectively, who were free of chronic diseases at recruitment, with mean values of 4.2- and 5.3-year follow-up. Cox's proportional-hazards regression was conducted to explore the relationship between dietary calcium intake and the incidence of obesity, type 2 diabetes, hypertension, and cardiovascular disease (CVD) with adjustment for covariates. Results: Calcium intakes were 451.35 ± 203.56 and 484.32 ± 198.61 (mean ± SD) mg/day in HDNNCDS and CHNS. After adjusting the covariates, the relationship between dietary calcium intake and bone mineral density (BMD) was not statistically significant (p = 0.110). In the multivariate-adjusted Cox's proportional-hazards regression model, dietary calcium intakes were inversely associated with obesity incidence in both cohorts (HR [95% CI]: 0.61 [0.48-0.77] and p trend < 0.001 in fixed-effects model); nevertheless, there was no correlation between dietary calcium intake and the risk of type 2 diabetes (p trend = 0.442 and 0.759) and CVD (p trend = 0.826 and 0.072). The relationship between dietary calcium intake and the risk of hypertension in the two cohorts was inconsistent (p trend = 0.012 and 0.559). Additionally, after further adjusting the vegetable intake in the original multivariate model, both cohorts found no association between dietary calcium intake and the risk of developing obesity (p trend = 0.084 and 0.444). Conclusions: Our data suggest that the current calcium intake of Chinese residents was inversely associated with obesity, which may be related to consumption of vegetables. Meanwhile, the current calcium intake does not increase the risk of type 2 diabetes, CVD, and bone health burden. This research suggested that the Chinese current calcium intake level may have met the needs of the body.

17.
J Diabetes Clin Res ; 2(1): 12-15, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32432228

RESUMEN

Rates of type 2 diabetes are reaching epidemic levels. Yet, the tissue specific alterations due to insulin resistance are only recently being investigated. The goal of the present study was to evaluate retinal insulin signal transduction in a common mouse model of type 2 diabetes, the db/db mouse. Retinal lysates from five month old male db/db and db/+ (control) mice were collected and processed for Western blotting or ELISA analyses for insulin receptor, insulin receptor substrate-1 (IRS-1), Akt, tumor necrosis factor alpha (TNFα) and caspase 3 levels. Data demonstrate increased TNFα and IRS-1 phosphorylation on serine 307. This led to decreased Akt phosphorylation on serine 473 and increased cleavage of caspase 3. Taken together, the data suggest dysfunctional insulin signaling in the retina of the db/db mouse. insulin.

18.
Nutr Metab (Lond) ; 17: 13, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32042299

RESUMEN

BACKGROUND: Our study aims to investigate the mechanisms of lncRNA Gm12664-001 improved hepatic lipid accumulation-initiated NAFLD via regulating miR-295-5p and CAV1 in AML12 cells. METHODS: The animals were divided into normal control (NC) group and high fat diet (HFD) group (20 mice per group) for 8w. The steatotic liver was measured by hematoxylin eosin (HE) staining and kits. We performed systematical analyses on hepatic expression profiles of long noncoding RNAs (lncRNAs) and microRNAs in a high-fat diet (HFD)-induced steatotic animal model. The expression profile of targets was confirmed by bioinformatics analysis, luciferase assay, RT-PCR and western blot in AML12 cells. RESULTS: HFD treatment markedly observed hepatic fatty degeneration with primarily fat vacuoles, and increased TG level compared with control. According to microarray data, we found that transfection of Gm12664-001 siRNA (siRNA-118,306) obviously enhanced TG accumulation and repressed CAV1 in AML12 cells. Furthermore, the TG accumulation markedly increased by siRNA-mediated knockdown of CAV1 in AML12 cells. By bioinformatics prediction, AML12 cells were transfected of siRNA-118,306 obviously upregulated miR-295-5p. Transfection of miR-295-5p mimics significantly increased TG accumulation and obviously suppressed the target CAV1. CONCLUSIONS: The results revealed that lncRNA Gm12664-001 attenuated hepatic lipid accumulation through negatively regulating miR-295-5p and enhancing CAV1 expression in AML12 cells.

19.
Opt Express ; 27(9): 12171-12181, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31052761

RESUMEN

In this paper, we proposed and experimentally demonstrated a long-distance high-speed underwater optical wireless communication (UOWC) system in a laboratory environment by using a low-cost green laser diode (LD) and power-efficient non-return-to-zero on-off keying (NRZ-OOK) modulation. The system successfully achieved a data rate of 500 Mbps through a 100 m tap-water channel by using a pigtailed single-mode fiber 520 nm green LD. The tap water was measured to have an attenuation coefficient comparable to pure seawater. The measured system bit error rate (BER) value of 2.5 × 10-3 was below the forward error correction (FEC) limit of 3.8 × 10-3 with 7% overhead. The distance can be extended if the received optical power is allowed to reduce to the minimum power to meet the data rate requirement. Based on the measured minimum required power and the power decay model in the water channel, the transmission performance was predicted to be 146 m/500 Mbps and 174 m/100 Mbps.

20.
Am J Physiol Cell Physiol ; 317(1): C68-C81, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30995106

RESUMEN

Endothelial dysfunction is a key risk factor in diabetes-related multiorgan damage. Methylglyoxal (MGO), a highly reactive dicarbonyl generated primarily as a by-product of glycolysis, is increased in both type 1 and type 2 diabetic patients. MGO can rapidly bind with proteins, nucleic acids, and lipids, resulting in structural and functional changes. MGO can also form advanced glycation end products (AGEs). How MGO causes endothelial cell dysfunction, however, is not clear. Human aortic endothelial cells (HAECs) from healthy (H-HAECs) and type 2 diabetic (D-HAECs) donors were cultured in endothelial growth medium (EGM-2). D-HAECs demonstrated impaired network formation (on Matrigel) and proliferation (MTT assay), as well as increased apoptosis (caspase-3/7 activity and TUNEL staining), compared with H-HAECs. High glucose (25 mM) or AGEs (200 ng/ml) did not induce such immediate, detrimental effects as MGO (10 µM). H-HAECs were treated with MGO (10 µM) for 24 h with or without the ATP-sensitive potassium (KATP) channel antagonist glibenclamide (1 µM). MGO significantly impaired H-HAEC network formation and proliferation and induced cell apoptosis, which was reversed by glibenclamide. Furthermore, siRNA against the KATP channel protein Kir6.1 significantly inhibited endothelial cell function at basal status but rescued impaired endothelial cell function upon MGO exposure. Meanwhile, activation of MAPK pathways p38 kinase, c-Jun NH2-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) (determined by Western blot analyses of their phosphorylated forms, p-JNK, p-p38, and p-ERK) in D-HAECs were significantly enhanced compared with those in H-HAECs. MGO exposure enhanced the activation of all three MAPK pathways in H-HAECs, whereas glibenclamide reversed the activation of p-stress-activated protein kinase/JNK induced by MGO. Glyoxalase-1 (GLO1) is the endogenous MGO-detoxifying enzyme. In healthy mice that received an inhibitor of GLO1, MGO deposition in aortic wall was enhanced and endothelial cell sprouting from isolated aortic segment was significantly inhibited. Our data suggest that MGO triggers endothelial cell dysfunction by activating the JNK/p38 MAPK pathway. This effect arises partly through activation of KATP channels. By understanding how MGO induces endothelial dysfunction, our study may provide useful information for developing MGO-targeted interventions to treat vascular disorders in diabetes.


Asunto(s)
Aorta/efectos de los fármacos , Diabetes Mellitus Tipo 2/enzimología , Canales KATP/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neovascularización Fisiológica , Piruvaldehído/toxicidad , Animales , Aorta/enzimología , Aorta/patología , Apoptosis/efectos de los fármacos , Estudios de Casos y Controles , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Tipo 2/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucosa/toxicidad , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Canales KATP/genética , Lactoilglutatión Liasa/metabolismo , Masculino , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Fosforilación , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...